Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Imidazo[1,2-b]isoquinoline-5,10-dione

Nassir N. Al-Mohammed, **‡** Yatimah Alias, Zanariah Abdullah and Hamid Khaledi*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: khaledi@siswa.um.edu.my

Received 22 May 2011; accepted 7 June 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.040; wR factor = 0.107; data-to-parameter ratio = 14.2.

The title butterfly-shaped molecule, $C_{11}H_6N_2O_2$, is folded slightly along the O=C···C=O line, the dihedral angle between the two parts being 6.42 (3)°. In the crystal, adjacent molecules are linked through $C-H \cdots O$ hydrogen bonds into infinite layers parallel to the ac plane. The layers are further connected into a three-dimensional network via π - π interactions formed between pairs of antiparallel arranged molecules, with a centroid-centroid distance between the central six-membered ring and the benzene ring of 3.4349 (9) Å.

Related literature

For the structure of isoquinolinedione-pyrrole fused system in 1,3-dinitropyrrolo[1,2-b]isoquinoline-5,10-dione, see: Du & Hitchcock (1992).

Experimental

Crystal data

 $C_{11}H_6N_2O_2$ $V = 847.66 (13) \text{ Å}^3$ $M_r = 198.18$ Z = 4Monoclinic, $P2_1/c$ Mo Ka radiation a = 7.6518 (7) Å $\mu = 0.11 \text{ mm}^$ b = 7.2469 (6) Å T = 100 Kc = 15.5197 (13) Å $0.21 \times 0.17 \times 0.09 \; \rm mm$ $\beta = 99.947 (1)^{\circ}$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.977, T_{\max} = 0.990$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$	136 parameters
R[I > 20(I)] = 0.040 $w R(F^2) = 0.107$	H atom parameters constrained
S = 1.04	$\Lambda_{0} = 0.20 \circ {\rm \AA}^{-3}$
S = 1.04	$\Delta \rho_{\rm max} = 0.29 \ \text{e A}$
1925 reflections	$\Delta \rho_{\rm min} = -0.22$ e A

4894 measured reflections

 $R_{\rm int} = 0.021$

1925 independent reflections

1583 reflections with $I > 2\sigma(I)$

Table 1

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2\cdotsO1^{i}$ $C6-H6\cdotsO1^{ii}$ $C8-H8\cdotsO2^{iii}$	0.95	2.46	3.2828 (17)	146
	0.95	2.57	3.5190 (19)	179
	0.95	2.55	3.2233 (17)	128

Symmetry codes: (i) x + 1, y, z; (ii) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (iii) x - 1, y, z.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

The authors thank the University of Malaya for funding this study (FRGS grant No. FP001/2010 A).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2380).

References

Barbour, L. J. (2001). J. Supramol. Chem, 1, 189-191.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Du, M.-H. & Hitchcock, P. B. (1992). Acta Cryst. C48, 2058-2060.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

[‡] Additional correspondence author, e-mail: m_nassir1971@yahoo.com.

supplementary materials

Acta Cryst. (2011). E67, o1666 [doi:10.1107/S1600536811022082]

Imidazo[1,2-b]isoquinoline-5,10-dione

N. N. Al-Mohammed, Y. Alias, Z. Abdullah and H. Khaledi

Comment

This work reports the first crystal structure of an isoquinolinedione-fused imidazole. The structure of an isoquinolinedionepyrrole fused system has been reported previously (Du & Hitchcock, 1992). The present molecule (Fig. 1) is almost planar (r.m.s deviation = 0.0718 Å) but slighly bent along the O=C···.C=O line with the corresponding dihedral angle of 6.42 (3)°. In the crystal, intermolecular C—H···O interactions (Table 1) connect the molecules into a two-dimensional array in the *ac* plane (Fig. 2). The isoquinoline rings of pairs of the molecule related by symmetry -x + 1, -y + 1, -z, are placed above each other in an anti-parallel manner with the centriods of the six-membered heterocyclic ring and the benzene ring at a distance of 3.4349 (9) Å.

Experimental

A solution of phthaloyl chloride (5.58 g, 27.5 mmol) in dry pyridine (20 ml) was added dropwise to a mixture of imidazole (1.7 g, 25 mmol) and bis (triphenylphosphine)palladium (II) chloride (0.87 g) in dry pyridine (15 ml) at 273 K. The mixture was refluxed for 4 h, then cooled to room temperature and poured into ice water (150 ml). The aqueous solution was extracted with chloroform and the chloroform solution was washed with 2 % aqueous HCl solution and distilled water (3 x15 ml). It was dried over magnesium sulfate and evaporated under vacuum. The amorphous residue was re-crystallized from acetonitrile to give yellow crystals of the title compound (m.p. = $232-234^{\circ}$ C).

Refinement

Hydrogen atoms were placed at calculated positions and refined as riding atoms with C—H distance of 0.95 Å and with $U_{iso}(H)$ set to 1.2 $U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound showing displacement ellipsoids at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.

Fig. 2. The 2D-network formed by C—H…O hydrogen bonds.

Imidazo[1,2-b]isoquinoline-5,10-dione

Crystal data

C₁₁H₆N₂O₂ $M_r = 198.18$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 7.6518 (7) Å b = 7.2469 (6) Å c = 15.5197 (13) Å $\beta = 99.947$ (1)° V = 847.66 (13) Å³ Z = 4

Data collection

Bruker APEXII CCD diffractometer	1925 independent reflections
Radiation source: fine-focus sealed tube	1583 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.021$
φ and ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -9 \rightarrow 9$
$T_{\min} = 0.977, \ T_{\max} = 0.990$	$k = -9 \longrightarrow 8$
4894 measured reflections	$l = -20 \rightarrow 19$

F(000) = 408

 $\theta = 2.7 - 29.5^{\circ}$

 $\mu = 0.11 \text{ mm}^{-1}$

Block, yellow

 $0.21\times0.17\times0.09~mm$

T = 100 K

 $D_{\rm x} = 1.553 {\rm Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1521 reflections

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.040$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.107$	H-atom parameters constrained
S = 1.04	$w = 1/[\sigma^2(F_o^2) + (0.0535P)^2 + 0.3219P]$ where $P = (F_o^2 + 2F_c^2)/3$
1925 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
136 parameters	$\Delta \rho_{max} = 0.29 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.26338 (13)	0.48928 (15)	0.19588 (7)	0.0219 (3)
O2	0.82600 (13)	0.21685 (15)	0.07219 (7)	0.0224 (3)
N1	0.62688 (16)	0.52159 (17)	0.28827 (8)	0.0186 (3)
N2	0.70971 (15)	0.36883 (16)	0.17748 (7)	0.0152 (3)
C1	0.80899 (19)	0.5005 (2)	0.30252 (10)	0.0202 (3)
H1	0.8866	0.5453	0.3526	0.024*
C2	0.86301 (19)	0.4074 (2)	0.23580 (9)	0.0197 (3)
H2	0.9811	0.3757	0.2304	0.024*
C3	0.69589 (18)	0.28089 (19)	0.09539 (9)	0.0160 (3)
C4	0.51463 (18)	0.27899 (19)	0.04292 (9)	0.0154 (3)
C5	0.4917 (2)	0.20479 (19)	-0.04108 (9)	0.0190 (3)
H5	0.5907	0.1567	-0.0632	0.023*
C6	0.3242 (2)	0.2012 (2)	-0.09248 (10)	0.0222 (3)
H6	0.3089	0.1516	-0.1500	0.027*
C7	0.1790 (2)	0.2701 (2)	-0.06005 (9)	0.0217 (3)
H7	0.0644	0.2665	-0.0953	0.026*
C8	0.20076 (18)	0.3441 (2)	0.02357 (9)	0.0186 (3)
H8	0.1011	0.3913	0.0454	0.022*
C9	0.36831 (18)	0.34932 (19)	0.07565 (9)	0.0150 (3)
C10	0.38834 (18)	0.43063 (19)	0.16455 (9)	0.0155 (3)
C11	0.57142 (18)	0.44126 (19)	0.21262 (9)	0.0151 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0171 (5)	0.0277 (6)	0.0215 (5)	0.0024 (4)	0.0055 (4)	-0.0027 (4)
O2	0.0182 (5)	0.0241 (6)	0.0262 (6)	0.0027 (4)	0.0073 (4)	-0.0027 (5)
N1	0.0194 (6)	0.0195 (6)	0.0161 (6)	-0.0011 (5)	0.0012 (5)	-0.0007 (5)
N2	0.0137 (6)	0.0157 (6)	0.0160 (6)	-0.0003 (4)	0.0022 (4)	0.0007 (5)
C1	0.0191 (7)	0.0209 (7)	0.0189 (7)	-0.0032 (6)	-0.0013 (5)	-0.0004 (6)
C2	0.0145 (7)	0.0201 (7)	0.0229 (7)	-0.0012 (6)	-0.0006 (5)	0.0029 (6)
C3	0.0179 (7)	0.0131 (6)	0.0175 (7)	-0.0002 (5)	0.0044 (5)	0.0017 (5)
C4	0.0185 (7)	0.0120 (6)	0.0156 (7)	-0.0010 (5)	0.0027 (5)	0.0027 (5)
C5	0.0265 (8)	0.0150 (7)	0.0165 (7)	-0.0012 (6)	0.0064 (6)	0.0012 (6)
C6	0.0343 (9)	0.0166 (7)	0.0147 (7)	-0.0056 (6)	0.0015 (6)	0.0003 (5)
C7	0.0226 (7)	0.0215 (8)	0.0186 (7)	-0.0052 (6)	-0.0037 (6)	0.0032 (6)
C8	0.0163 (7)	0.0195 (7)	0.0194 (7)	-0.0017 (6)	0.0017 (5)	0.0029 (6)

supplementary materials

C9 C10 C11	0.0169 (7) 0.0159 (7) 0.0155 (7)	0.0134 (7) 0.0146 (7) 0.0143 (7)	0.0146 (7) 0.0163 (7) 0.0160 (7)	-0.0018 (5) -0.0007 (5) 0.0003 (5)	0.0024 (5) 0.0038 (5) 0.0043 (5)	0.0032 (5) 0.0021 (5) 0.0019 (5)
Geometric param	neters (Å, °)					
O1—C10		1.2215 (16)	C4—	·C9		1.4027 (19)
O2—C3		1.2084 (17)	С5—	·C6		1.388 (2)
N1-C11		1.3135 (18)	С5—	H5		0.9500
N1—C1		1.3812 (19)	С6—	·C7		1.390 (2)
N2—C11		1.3754 (17)	С6—	H6		0.9500
N2—C2		1.3808 (18)	С7—	·C8		1.387 (2)
N2—C3		1.4121 (18)	С7—	·H7		0.9500
C1—C2		1.359 (2)	C8—	·C9		1.3930 (19)
C1—H1		0.9500	C8—	·H8		0.9500
С2—Н2		0.9500	С9—	·C10		1.4836 (19)
C3—C4		1.4821 (19)	C10-	C11		1.4710 (18)
C4—C5		1.3930 (19)				
C11—N1—C1		104.80 (12)	С5—	C6—C7		120.15 (14)
C11—N2—C2		106.70 (12)	С5—	С6—Н6		119.9
C11—N2—C3		125.95 (12)	С7—	С6—Н6		119.9
C2—N2—C3		127.27 (12)	C8—	·C7—C6		120.21 (14)
C2-C1-N1		111.36 (13)	C8—	С7—Н7		119.9
C2—C1—H1		124.3	С6—	С7—Н7		119.9
N1-C1-H1		124.3	С7—	-C8C9		120.21 (13)
C1—C2—N2		105.33 (13)	С7—	C8—H8		119.9
C1—C2—H2		127.3	С9—	C8—H8		119.9
N2—C2—H2		127.3	C8—	C9—C4		119.48 (13)
O2—C3—N2		120.33 (13)	C8—	C9—C10		119.16 (12)
O2—C3—C4		125.01 (13)	C4—	C9—C10		121.35 (12)
N2—C3—C4		114.65 (12)	01—	-C10C11		121.49 (13)
C5—C4—C9		120.00 (13)	01—	-C10C9		123.10 (13)
C5—C4—C3		118.17 (12)	C11-	-С10-С9		115.39 (12)
C9—C4—C3		121.83 (12)	N1—	-C11—N2		111.81 (12)
C6—C5—C4		119.95 (13)	N1—	-C11—C10		127.51 (12)
C6—C5—H5		120.0	N2—	-C11—C10		120.63 (12)
С4—С5—Н5		120.0				
Hydrogen-bond	geometry (Å, °)					
D—H··· A		D	—Н	H···A	$D \cdots A$	D—H···A
				- · · ·		

$D = \Pi^{\dots} A$	$D = \Pi$	$\Pi^{n}A$	$D^{\dots A}$	$D - \Pi^{\dots} A$
C2—H2···O1 ⁱ	0.95	2.46	3.2828 (17)	146
C6—H6…O1 ⁱⁱ	0.95	2.57	3.5190 (19)	179
C8—H8····O2 ⁱⁱⁱ	0.95	2.55	3.2233 (17)	128

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*, -*y*+1/2, *z*-1/2; (iii) *x*-1, *y*, *z*.

Fig. 2

